The Intelligent Planner
planning for smooth material transition
Logistics coordinates material input and output between manufacturing stations. Planning of these processes supports smooth flow of goods and continuous operation of machines. The Intelligent Planner supports companies in setting up robust material flow which increases the efficiency of overall operations.
Key achievements
- The development of a customised metaheuristic algorithm has improved in-time delivery of pieces by 37%
- The tool has enhanced shift scheduling impact on machine utilisation by 26%
Logistics in manufacturing environments
ai based planning
Planning is essential for organizations and businesses: it helps establish appropriate goals, reveals weaknesses (and strengths), increases efficiency, reduces risks, and enhances decision-making. The complexity of planning and the need for re-planning have increased due to the exceptional circumstances we are experiencing, such as disruptions in the supply chain, the need to save energy consumption to minimize costs, ecological transition, and increasingly sophisticated manufacturing processes, among others.
The initial situation of this factory in the aerospace machining sector, is characterized by a manual process, limitations in adaptability, and the inability to simulate scenarios. Additionally, issues related to delays in parts and non-productive hours posed challenges in production management and operational efficiency.
- Manual process: The factory relied heavily on human labour to carry out its operations. This influenced the speed, quality, and efficiency of production.
- Classic algorithm: The factory used traditional methods for production scheduling and task assignment, which limited its flexibility and adaptability to respond to changes in demand or operational conditions. Data obtained over two months on the 35 production machines included:
- 487 delayed pieces resulting from difficulties in meeting delivery deadlines or problems in production planning and execution.
- 2736 non-productive hours or downtime in its machines or processes caused by maintenance issues, adjustments, unplanned downtime, and other factors.
- Limitations in adaptability: The company had limited ability to modify its processes or equipment in an agile manner in response to changes in the environment or market needs, affecting its competitiveness.
- Inability to simulate scenarios hindered the factory from conducting predictive analysis and testing different production strategies before implementation, making decision-making challenging.
The Artificial Intelligence project focused on implementing a production planning tool in the factory. The Easy Planner tool is capable of dynamically generating optimal plans, adapting to each situation in the plant, and learning from previous experience. It suggests a dynamic order of jobs on machines, optimizing one or multiple Key Performance Indicators (KPIs) identified by the user, while also considering the available resources for plan execution, such as tools, raw materials, or labour.
The implementation of the AI tool resulted in significant benefits for the business. Firstly, the digitization of the process led to standardization, thus reducing the risk of operational failures.
Additionally, the development of a customized metaheuristic algorithm has had a significant impact on the factory's efficiency. A 37% improvement in the number of delayed pieces has been achieved, decreasing from 487 to 305. Similarly, non-productive hours have seen an impressive 54% reduction.
One of the most notable changes is the machines' ability to respond to events such as breakdowns and changes in part preferences. This has increased operational resilience and improved customer satisfaction by ensuring a more stable and predictable production flow.
Furthermore, the planning tool has allowed for the simulation of different scenarios, leading to more efficient shift scheduling. A specific example is a machine that has experienced a 26% reduction, going from 96 to 71, demonstrating the adaptability and optimization capabilities provided by this new AI tool.
The company plans to use the planner tool for additional areas of operation and starts to train more personnel on its use.